
Covert Channels in Online Rogue-like Games

Hasnain Lakhani 1

Computer Science Laboratory
SRI International

Menlo Park, CA, United States 94025
Email: hasnain.lakhani@sri.com

Fareed Zaffar
School of Science and Engineering

Lahore University of Management Sciences
Lahore, Pakistan 54792

Email: fareed.zaffar@lums.edu.pk

Abstract—Covert channels allow two parties to exchange
secret data in the presence of adversaries without disclosing
the fact that there is any secret data in their communications.
We propose and implement EEDGE, an improved method for
steganography in mazes that builds upon the work done by Lee
et al; and has a significantly higher embedding capacity. We
apply EEDGE to the setting of online rogue-like games, which
have randomly generated mazes as the levels for players; and
show that this can be used to successfully create an efficient,
error-free, high bit-rate covert channel.

I. INTRODUCTION

In recent times, with the advent of social media and the
rise of censorship in certain countries, it has become even
more important for people to communicate securely without
detection. People may wish to send certain messages while
hiding their communications from others. Using encryption
is not enough; sometimes the mere presence of an encrypted
transmission is enough to arouse suspicion. Something stronger
is needed: a means of communication that does not arouse
suspicion while conveying a message that may be suspicious.

A covert channel is the use of a regular (overt) commu-
nication channel to communicate hidden data (covert) without
being detected by any other parties who are observing the flow
of information over the channel. A variety of covert channels
have been proposed in the literature; based on foundations
ranging from network protocols [11] to networked online
games [8]. Network protocol based schemes can be fairly
complex, however they generally tend to exhibit bit errors and
do not have very high bit rates.

Steganography, closely related to covert channels, is the
study of techniques to hide secret data in messages without
detection. A lot of the literature is focused on steganography
in digital images [1]. If we can hide data in a certain type of
message, and use a channel along which communication of
these type of messages is not suspicious, then we can easily
have a demonstrable covert channel.

We propose EEDGE, which is a scheme for steganography
in mazes. EEDGE builds upon the work by Lee et al [6].
Mazes depart from the traditional mediums for steganography,
but we can use them to build stegosystems that are error-free
and have a good embedding capacity. EEDGE has a high bit
rate, and, more importantly, it is error-free; unlike some image
steganography techniques which suffer from bit errors [1].

EEDGE hides data by marking certain edges in a maze
based on a shared key; and then choosing to keep or remove

1 Work done while at LUMS.

each of those edges based on bits read from the secret data
that is being hidden. The mazes that are transmitted are perfect
mazes and are visually indistinguishable from random mazes.
The receiver can figure out which edges were kept or removed
and thus extract the hidden message.

To successfully create a covert channel based on EEDGE,
we need to find a channel in which mazes are regularly sent so
that sending a maze will not be considered suspicious activity.
Fortunately for us, online games come to the rescue. Rogue
[7] is a game that is focused around the concept of players
exploring randomly generated maze-like levels. We use online
multi-player versions of Rogue as the overt channel.

The rest of the paper is organised as follows. Section III
covers EEDGE. Section IV describes how EEDGE can be
applied to create a covert channel in online rogue-likes. Section
V has an experimental evaluation of our system. Section
II reviews and discusses related work on covert channels,
online rogue-likes, and steganography. The paper concludes
in Section VI with a discussion of future work.

II. BACKGROUND

A. Covert Channels

A detailed treatment of network covert channels can be
found in [11]. Simmons’ Prisoner Problem [10] is the standard
example of a situation where a covert channel is necessary.
Alice and Bob, both prisoners, need to communicate in order
to devise a plan of escape. However, Wendy the warden
is listening to all their messages; and if she suspects any
hidden communication, Alice and Bob will be put into solitary
confinement. Thus Alice and Bob must exchange hidden infor-
mation (a covert channel) over a channel full of unsuspicious
messages (overt channel); such that Wendy can not notice what
they are doing.

In general, Alice and Bob use two networked computers
to communicate, exchanging normal, unsuspicious network
traffic inside of which hidden data is present. The traffic may
be routed through many intermediate nodes (Wendy’s) who
should not be aware of the existence of the covert channel.

B. Covert Channels in Games

Murdoch et al. in [8] propose a covert channel for collusion
in an online connect-4 contest (a single human player could
enter multiple programs in this contest). They developed a
covert channel by creating two types of players; foxes and
chickens. A fox would play the best strategy possible; while

chickens would intentionally lose to foxes but play their best
against other players. They used redundancy in the moves of
the game as their covert channel which allowed chickens to
detect foxes so that they could collude to win.

Hernandez-Castro et al. propose a game-theoretic approach
to steganography in games in [3]. They propose a method
where the secret data to be hidden is encoded in the strategy
a game player picks. They provide an implementation of their
covert channel in a game of Go and analyzed the effectiveness
of various steganalytic techniques against their scheme.

Both of the above schemes are mostly intended for col-
lusion between players in order to win a game. Zander et
al. propose a novel covert channel in First Person Shooter
games in [12]. They encode covert bits as small, visually
imperceptible, modifications of a character’s movements. Their
channel is noisy and has a low bit rate, but it is extremely
difficult to detect the covert channel and block it; unless one
wishes to block all network game traffic entirely.

Our scheme differs from all three in that it focuses on the
game level itself as the medium in which secret data is sent.

C. Online Rogue-likes

Rogue [7] is a game in which the player plays the role
of a fantasy adventurer exploring a large dungeon with many
levels. Each level, randomly generated, is a collection of
rooms connected by maze-like pathways; and has one stairway
leading to the level below. The player’s goal is to defeat the
monsters in each level, gain treasure, and eventually get to the
bottom of the dungeon. The term Rogue-like refers to a class
of games which were inspired by Rogue and share the same
basic game mechanics. There are multiplayer variants as well,
including TOMENET, which allows multiple players to play
on the same level and fight each other.

For our purposes, rogue-likes are important as the levels
are generally maze-like, though they may contain cycles. It
is not out of the ordinary to make modifications to the level
generation algorithm so that levels are always mazes.

D. Steganography

Steganography is a general technique, closely related to
covert channels, which aims to allow senders to embed data
in messages. The general difference between a covert channel
and a steganographic message is that covert channels tend to
require both parties to be online and in contact; while steganog-
raphy is more like a publish-subscribe service. The sender can
hide data inside a message and the receiver can receive it later
on without necessarily having to communicate directly with the
sender. For example, the previously mentioned covert channels
require both parties to be actively playing the game; while with
steganography one could publish an image to a photo sharing
service and the receiver could later retrieve it from there.

A lot of the steganographic techniques in the literature
revolve around images [1]. Most of these techniques have a
high capacity, however bit-error is a problem (due to compres-
sion artefacts) and there are steganalytic techniques that allow
detection of the hidden message.

E. Steganography with Mazes

Lee et al [6] proposed a steganographic scheme which was
focused on using mazes as the underlying medium, instead
of images. Their technique relied on the communication of a
maze with a certain identifiable path (which could be derived
by parties knowing the key). The sender would remove certain
edges from this path, based on the secret data it wished to
send; and the receiver could identify the removed edges and
thus recover the message. Their scheme focused on marking
certain vertices along the path, and then, for each cell, keeping
one of two edges based on the value of the bit in the message.
The main difference between their scheme and EEDGE is in
the embedding step; EEDGE uses an improved embedding
scheme to allow higher data rates. This difference is explained
in Section III.

F. Graph Classification

The graph classification problem is a task in which indi-
vidual graphs (from a larger database) need to be classified
into two or more categories, based on certain features of
the graphs. Several approaches for graph classification have
been proposed; ranging from frequent subgraph mining as in
SubdueCL [2], to evolutionary computation such as in GAIA
[4], to applying Boosting with naive classifiers such as in
gBoost [5]. Classifiers are relevant to EEDGE since mazes
can be represented as graphs. It would be important to ensure
that classifiers are unable to distinguish normal mazes from
mazes containing hidden data.

III. EEDGE

A. Definitions

Let M be the set of valid bit strings in some channel. A
stegosystem consists of the following set of algorithms [13]:

• COVER generates a random cover message c ∈M .

• EMBED takes a cover message c ∈ M , some secret
data d, a key k, and generates a hiddentext h ∈M .

• EXTRACT takes a hiddentext h, a key k, and outputs
the secret data d.

A stegosystem is said to be secure if an attacker can not
distinguish the output of EMBED from any valid message in
the channel; that is, any attacker should not be able to figure
out whether a message has data hidden inside it.

Our stegosystem, EEDGE, is based on the scheme pro-
posed by Lee et al in [6]. We propose a scheme that is
more general, and has a higher embedding capacity. Their
scheme focuses on using embeddable cells, while we focus
on embeddable edges; and as mazes have more edges than
vertices, we can embed more data.

Let EV denote the set of embeddable vertices (either one-
embeddable or two-embeddable) and EE denote the set of
embeddable edges.

1) A maze M of size w×h is a minimal spanning tree
of an undirected graph G(V,E) where each vertex
v ∈ V is a point on a w × h lattice.

2) A vertex v is a neighbour of a vertex v′ if they
represent adjacent points on the lattice.

3) A hidden tree H is a connected tree which is a
subtree of a maze M .

4) A vertex v ∈ H is one-embeddable if it has exactly
one neighbour n /∈ H , such that there is no vertex
v′ 6= v, v′ ∈ EV such that v′ is a neighbour of n.

5) A vertex v ∈ H is two-embeddable if it has exactly
two neighbours n1, n2 /∈ H , such that there is no
vertex v′ 6= v, v′ ∈ EV where v′ is a neighbour of
n1 or n2.

6) An edge (v1, v2) is an embeddable edge if v1 ∈ EV
and v2 /∈ H .

7) The key k of a hidden tree H is the set of leaf vertices
of H , i.e vertices with exactly one edge.

From these definitions, we can see that a one-embeddable
vertex will have one embeddable edge, while a two-
embeddable vertex will have two. Note that our definition
of a two-embeddable vertex is identical to the definition of
an embeddable cell as used in [6]. They store one bit per
embeddable cell, while we can store one bit per embeddable
edge, i.e. two bits per two-embeddable vertex and one bit per
one-embeddable vertex.

For a stegosystem, the COVER, EMBED, and EXTRACT
algorithms need to be defined. We also define a few others:

• COVER returns a random maze M .

• HIDDEN-TREE takes a maze M , a key k, and outputs
the hidden tree H corresponding to k.

• FIND-EMBEDDABLE-EDGES takes a maze M , a
key k, and returns the embeddable edges in M corre-
sponding to k.

• REGEN takes a graph G(V,E), a set of edges to keep
KE, and a set of edges to discard DE, and returns a
maze M such that all edges in KE are in M and no
edge in DE is in M .

• EMBED takes a maze M , a stream of secret bits d, a
key k, and returns a hiddentext maze H .

• EXTRACT takes a hiddentext maze H , a key k, and
outputs the secret data d.

B. Illustration

We will first illustrate the working of our algorithms
graphically, before formally describing them and proving their
correctness. This will provide intuition for the following
sections. Note that the illustration follows the order of the
algorithms being called. In the actual implementation, the users
of EEDGE only call COVER, EMBED, and EXTRACT.

Firstly, the sender runs the COVER algorithm to generate
a random cover maze M on a w × h lattice, as illustrated in
Figure 1(a).

The sender then randomly picks some vertices (at least
two), which will be used as the secret key k. The sender then
runs the HIDDEN-TREE algorithm on the maze M and the key
k to produce a hidden tree H , which is shown in Figure 1(b).
The figure illustrates the path (shown as red lines) between the
vertices in the key (shown as green dots).

(a) Cover Maze (b) Hidden Tree

(c) Embeddable Vertices (d) Embedded Edges

(e) Before REGEN (f) HiddenText Maze

Fig. 1. Steganography Sender Illustration

After that, the sender runs the FIND-EMBEDDABLE-
EDGES algorithm. This will mark embeddable vertices, as
shown in Figure 1(c). One-embeddable vertices are shown as
blue dots, while two-embeddable vertices are shown as red
dots. The vertices have been processed in the order they appear
on the solution path (the start point is the lower green dot).
This algorithm returns the list of embeddable edges EE which
is used later.

Next, the sender runs the EMBED algorithm. This will,
based on the secret data d (one bit per edge), assign embed-
dable edges to the set of edges to keep (KE) or discard (DE).
In Figure 1(d), edges in KE are shown in red, while edges in
DE are shown in green.

Lastly, the sender will create a new graph G(V,E) which
has all the vertices on a w × h lattice; and a partly defined
maze Mp(V,KE ∪H.edges) which has the edges in KE and
the edges along the solution path. Figure 1(e) shows Mp. The
sender will then run the REGEN algorithm to return a full
maze M ′ such that all edges in Mp are in M ′ and no edge
in DE is in M ′. Figure 1(f) shows the hiddentext maze M ′

(a) Hidden Tree (b) Embedded Edges

Fig. 2. Steganography Receiver Illustration

which is transmitted to the receiver.

The receiver will take M ′ and run the HIDDEN-TREE
algorithm to output the hidden tree H ′ corresponding to the
key k. The result is shown in Figure 2(a). Note that the hidden
tree H ′ in this figure is the same as the hidden tree H in Figure
1(b). The REGEN algorithm guarantees this.

The receiver will then run the FIND-EMBEDDABLE-
EDGES algorithm to mark which edges are embeddable, as
shown in Figure 2(b). The receiver will then run EXTRACT,
which will process each embeddable edge in order, see whether
it is actually in KE (and thus in M ′) or in DE (and thus not
in M ′). In this way, it will be able to read the secret data d.

C. Algorithms

We now describe the algorithms used in EEDGE. For
brevity, assume that the lattice parameters w, h are globals
that are available to every algorithm.

Algorithm 1 COVER
function COVER

Let V be the set of all vertices on a w × h lattice.
Let E be all edges between neighbouring vertices in V .
return RANDOM-MST(V,E)

end function

The COVER algorithm is trivial. We simply use any
randomized MST (Minimal Spanning Tree) algorithm to output
a maze on the w × h lattice. This will be used as the cover
message within which we will hide our data.

The HIDDEN-TREE algorithm assumes the existence of
a SOLVE-MAZE algorithm, which returns a list of vertices
along the solution path and the list of edges along the solution
path. In practice, this can be implemented using BFS or DFS.

Many Randomized MST algorithms can be easily adapted
to become a suitable implementation of REGEN. We pro-
vide an implementation based on Kruskal’s algorithm, with
a disjoint-set data structure supporting the FIND-SET and
UNION operations.

D. Correctness

We need to prove that our algorithms return correct results;
which means that the secret data d should not be corrupted.

Algorithm 2 HIDDEN-TREE
function HIDDEN-TREE(k,M)

V ← k
E ← {}
for i = 2→ k.length do

(v, e)← SOLVE-MAZE(M,k[1], k[i])
V ← V ∪ {v}
E ← E ∪ {e}

end for
return (V,E)

end function

Algorithm 3 FIND-EMBEDDABLE-EDGES
function FIND-EMBEDDABLE-EDGES(M,k)

EV ← k
EE ← {}
(V,E)← HIDDEN-TREE(k,M)
for v ∈ V, v /∈ k do

if v is a one-embeddable vertex then
EV ← EV ∪ {v}
EE ← EE ∪ {(v, n)}

end if
if v is a two-embeddable vertex then

EV ← EV ∪ {v}
EE ← EE ∪ {(v, n1), (v, n2)}

end if
end for
return (V,E,EE)

end function

Formally:

∀c, k, d EXTRACT(EMBED(c, k, d), k) = d

Proving correctness of COVER, and HIDDEN-TREE is
trivial, as they simply invoke standard algorithms. FIND-
EMBEDDABLE-EDGES can similarly be shown to be correct
as it just applies the embeddable vertex criteria and adds
vertices to the appropriate set.

Algorithm 4 REGEN-KRUSKAL
function REGEN-KRUSKAL(V,E,KE,DE)

FE ← KE
E ← SHUFFLE(E −DE)
for v ∈ V do

MAKE-SET(v)
end for
for (v1, v2) ∈ KE do

UNION(v1, v2)
end for
for (v1, v2) ∈ E do

if FIND-SET(v1) 6= FIND-SET(v2) then
FE = FE ∪ {(v1, v2)}
UNION(v1, v2)

end if
end for
return (V, FE)

end function

Algorithm 5 EMBED
function EMBED(M,k,d)

(HV,HE,EE)← FIND-EMBEDDABLE-EDGES(M,k)
DE ← {}
KE ← HE
for e ∈ EE do

if READ-NEXT-BIT(d) == 1 then
KE ← KE ∪ {e}

else
DE ← DE ∪ {e}

end if
end for
Let V be the set of all vertices on a w × h lattice.
Let E be all edges between neighbouring vertices in V .
return REGEN(V,E,KE,DE)

end function

Algorithm 6 EXTRACT
function EXTRACT(M’,k)

EE ← FIND-EMBEDDABLE-EDGES(M ′, k)
d← []
for e ∈ EE do

if e ∈M ′.edges then
d.append(1)

else
d.append(0)

end if
end for
return d

end function

The REGEN-KRUSKAL algorithm should output a Ran-
dom MST (V,E) such that no edge in DE is in E and all
edges in KE are in E. By an analysis of the algorithm, we
can see that we are simply running Kruskal’s algorithm on
a graph G(V,E − DE) where the vertices of edges in KE
have already been added to the same set. Thus, if this graph
has an MST, REGEN-KRUSKAL will find it. At the end, we
add in the edges in KE to this result, which will not add any
cycles because Kruskal’s algorithm assumed those vertices to
be connected (as we had added them to the same set).

The one concern in the above proof is the if in the statement
”if the graph has an MST”. However, simple intuition shows
that it is highly unlikely for such a graph (e.g. Figure 1(e))
not to have an MST, since there is likely to be a connection
from the hidden tree H to the rest of the graph. We can
back this notion up with our experimental results; where we
have not encountered a case where an MST is not present in
over 106 experimental trials. Thus REGEN succeeds with high
probability.

Lastly, we have to show that the REGEN algorithm does
not modify the hidden tree H in any way so that it can be read
later. Assuming that all edges in the hidden tree are in KE
(which EMBED does), these edges will be preserved as shown
before. As the REGEN algorithm generates an MST with no
cycles (as shown before), there will be no other path between
these vertices and the hidden path will be preserved.

The correctness of EMBED and EXTRACT is similarly

trivial to prove. EMBED simply adds edges to the set of
edges to keep (KE) or discard (DE) based on the secret
data, and then calls REGEN. EXTRACT simply calls FIND-
EMBEDDABLE-EDGES and then traverses the graph and sees
whether edges are present (and thus were in KE, representing
a 1) or absent (and thus in DE, representing a 0).

E. Security

If the algorithms used by COVER and REGEN are the
same (as in Figure 1, where the Kruskal algorithm is used)
there will be no stylistic difference between a cover maze
M and a hiddentext maze H . Both mazes are perfect mazes
(since they are MSTs) and H could have equally likely been
generated by another call of COVER. To see this, note that
a randomized implementation of Kruskal’s algorithm shuffles
the list of edges and then processes them in order; and can
result in the same maze that would be generated by a call to
REGEN-KRUSKAL with a certain set of edges to keep and
to discard. This is since the edges to discard are removed by
moving them to the front of the list of edges to be processed,
and edges to be kept are done so by moving them to the end
of the list.

To back up the assertion of visual indistinguishability,
we can also attempt to train a graph classifier to distinguish
between cover mazes and hiddentext mazes. In Section V we
present results showing that classifiers are unable to distinguish
between cover and hiddentext mazes. We also present results
of a user study showing that users were unable to visually
distinguish between cover and hiddentext mazes. Since the
hidden texts are indistinguishable from the cover messages, an
attacker can not know whether a certain maze contains secret
data or not.

With some suspicion about the presence of a hidden
message and without knowledge of the key, the attacker is
thus reduced to bruteforce guessing. For this, the attacker has
to guess the size of the key, the vertices in the key, and the
order of the vertices in the key. For a w × h lattice with a
maximum key size of k, the number of combinations is:

N =
∑

2≤i≤k

(
w · h
i

)
· i!

For a 64 × 64 lattice with k = 4, this equates to about
2.8 · 1014 possible combinations for the attacker to check,
which means that the probability of actually guessing the key
correctly is very low.

IV. COVERT CHANNEL

It is trivial to apply EEDGE in the context of rogue-likes
to achieve a real world covert channel. Note that we limit the
scope of our covert channel to games in which the levels are
mazes (and thus do not have cycles).

For the purposes of this discussion, an online rogue-like
involves players P1 . . . Pn exploring randomly-generated levels
M1 . . .Mn sent by a server S. There may be many players in
the same level at the same time, or each player may be in
their own level. The key point is that the levels are randomly
generated by the server and sent to the players.

TABLE I. BITS EMBEDDED IN 64× 64 MAZE WITH KEY LENGTH 5.

Algorithm EEDGE ECELL

RecursiveBacktracker 780 260

Kruskal 364 144

Prim 264 109

RecursiveDivision 449 170

GrowingTree 279 110

HuntAndKill 433 154

SideWinder 338 123

Assume Alice and Bob have shared a PRNG seed s. If
Alice wants to use a covert channel to send messages to Bob,
she can setup a public game server. Bob, along with Eve,
Mallory, and many other players, can play the game on this
server. When Alice wants to send a message to Bob, she does
the following:

1) Run the COVER algorithm to get a random maze C.
2) Use the PRNG to generate a key length l.
3) Randomly pick l points to use as a key k.
4) Use EMBED to generate a maze M using k and C.
5) Broadcast M as a new level.

Since EEDGE is secure, other players will just see M
as a perfectly normal level, so they will not have any idea
that anything is amiss. However, Bob can use the PRNG to
regenerate the key, and run EXTRACT on the key and M to
recover the secret message that Alice intended to send.

V. EXPERIMENTAL EVALUATION

We implemented EEDGE, as well as the stegosystem by
Lee et al in [6], hence referred to as ECELL. All experiments
were run on a machine with a 2.27 GHz Quad Core i5
processor and 8GB RAM.

A. Embedding Capacity

We implemented COVER using various algorithms from
the list available in [9]. Some algorithms produce longer
solution paths, which result in a higher capacity for embedded
data. Most notably, the RecursiveBacktracker algorithm gen-
erates mazes width long paths that don’t have many branches,
so they tend to have a higher capacity. We provided four
implementations of REGEN, using the Kruskal, Prim, DFS,
and HuntAndKill algorithms.

Table I shows a comparison of EEDGE against ECELL for
various implementations of COVER. The experiment was run
with 500 random mazes of size 64× 64 and a key length of 5
points (which means 4 paths). The process in Section IV was
followed, and the number of bits embedded in the maze was
noted. The average bits embedded per maze was calculated.
As can be seen from the figure, EEDGE is significantly better
in terms of embedding capacity.

Figure 3 shows how the number of embedded bits in
EEDGE grows as a function of both the maze size and the
key length, again taken as an average over 500 random mazes.
We can see that maze size is the major factor in determining
the number of bits that can be embedded. The intuition behind
this is that in a larger maze, the key points are further apart,

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000
 8500
 9000
 9500

 2 3 4 5

Key Length

Bits Embedded in Maze

64x64
128x128
256x256

Fig. 3. Bits Embedded as a function of key length and maze size.

thus the hidden tree contains more edges; making it more likely
for it to have more embeddable edges.

The ratio of cover data to actual embedded data is reason-
able in EEDGE. It takes two bits to encode one cell in a maze,
since we have to store the edges to the right and to the bottom.
So we need 8192 bits to represent a 64× 64 maze; in which
we can store 780 bits (see Table I). Thus the ratio of actual
data to cover data is about 9.5%.

Our simple, unoptimized implementation can embed (and
then extract) approximately 21k bits per second, when re-
peatedly generating mazes as per the procedure given in
Section IV. Most of the time is spent in the maze generation,
regeneration, and solving algorithms. The algorithms are also
fairly concise and simple to implement, which is a practical
bonus for people looking to use EEDGE. Our implementation
contains 7 generation algorithms, 4 regeneration algorithms,
3 solution algorithms, and two stegosystems, all in under a
thousand lines of code.

B. Steganalysis - Classifiers

Since mazes are just special classes of graphs, if there is
a systematic difference between hiddentext mazes and cover
mazes, a graph classifier should be able to accurately classify
a given maze into the hiddentext or cover maze categories. If
graph classifiers are unable to do so, it provides a compelling
argument for the security of EEDGE.

We decided to try out three graph classifiers to see whether
they could detect hiddentext mazes.

For SubdueCL [2] and GAIA [4], we generated 100 random
mazes of size 20 × 20 (larger mazes were not used due
to computational limitations). 50 of these mazes were cover
mazes, and 50 were hiddentext mazes (albeit generated from
another set of cover mazes). SubdueCL was unable to produce
a meaningful set of substructures for its classifier. It had a vali-
dation error of 0.5, with 50 false positives and 50 true positives,
indicating it classified every maze as hiddentext, which is not
useful at all. GAIA returned no classification, stating ”graph
has no discriminative feature” for each of the input graphs,
also indicating the lack of meaningful distinguishing data for
classification.

TABLE II. GBOOST CLASSIFIER RESULTS

Accuracy 0.45

ROC AUC 0.5336

ROC EER 0.48

True Positives 19

True Negatives 26

False Positives 24

False Negatives 31

For gBoost [5], we generated 100 random mazes of size
64 × 64 (50 hiddentext, 50 cover) for both the training and
test sets of data. The output results, containing accuracy and
ROC curve statistics, are presented in table II. This classifier
also performs poorly, worse than even random coin flips. The
high rate of false positives and false negatives show that the
results are not very useful.

C. Steganalysis - User Study

In order to support our claim that EEDGE generates
hiddentext mazes that are visually indistinguishable from cover
mazes, we decided to perform a user study. We designed a
survey containing 10 sets of six mazes each, one of which was
a hiddentext maze while others were cover mazes. Participants
were told that one maze in each set was generated by a secret
agent and looked slightly different from the rest, introducing
them to the idea of a hiddentext maze. Their task was to try
and identify the hiddentext maze in each set. We gathered
31 responses, from university students who had a background
in Computer Science. We then totaled the number of correct
answers for each participant. The mean was 1.54, with a
standard deviation of 1.12. The highest score was 4. The mean
result is approximately equal to what would be expected given
random guessing (1.67); indicating that users were not able to
visually distinguish between cover and hiddentext mazes.

VI. CONCLUSION AND FUTURE WORK

We have proposed and implemented EEDGE, an improved
system for steganography in mazes; and shown how it can
be applied to create a covert channel in online rogue-likes.
EEDGE is simple, efficient, and secure; and the resulting
covert channel is both error-free and has a high bit rate.
EEDGE is secure against steganalysis attacks using graph
classifiers, and was shown to be indistinguishable from random
mazes in a user study.

The limitation of EEDGE is that it works on mazes, and
thus it can only be applied to a setting where all the game
levels are mazes. In the future, we would like to investigate
whether it would be possible to create a steganographic scheme
that works with general levels (modeled as arbitrary graphs);
which could then be applied to create covert channels in a
much larger class of online games.

ACKNOWLEDGMENT

The authors would like to thank the participants of the user
study for their feedback.

REFERENCES

[1] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt. Digital image
steganography: Survey and analysis of current methods. Signal Pro-
cessing, 90(3):727–752, 2010.

[2] J. A. Gonzalez, L. B. Holder, and D. J. Cook. Graph based concept
learning. AAAI/IAAI, 1072, 2000.

[3] J. C. Hernandez-Castro, I. Blasco-Lopez, J. M. Estevez-Tapiador, and
A. Ribagorda-Garnacho. Steganography in games: A general method-
ology and its application to the game of go. computers & security,
25(1):64–71, 2006.

[4] N. Jin, C. Young, and W. Wang. Gaia: graph classification using
evolutionary computation. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 879–890.
ACM, 2010.

[5] T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting
to graph classification. In Advances in neural information processing
systems, pages 729–736, 2004.

[6] H. Lee, C. Lee, and L. Chen. A perfect maze based steganographic
method. Journal of Systems and Software, 83(12):2528–2535, 2010.

[7] M. L. Mauldin, G. Jacobson, A. W. Appel, and L. G. Hamey. Rog-o-
matic: a belligerent expert system. 1983.

[8] S. Murdoch and P. Zieliński. Covert channels for collusion in online
computer games. In Information Hiding, pages 419–429. Springer,
2005.

[9] W. Pullen. Think labyrinth: Maze algorithms, Jan. 2011.
[10] G. J. Simmons. The prisoners problem and the subliminal channel.

In Advances in Cryptology. Proc. of Crypto, volume 83, pages 51–67,
1984.

[11] S. Zander, G. Armitage, and P. Branch. A survey of covert channels
and countermeasures in computer network protocols. Communications
Surveys & Tutorials, IEEE, 9(3):44–57, 2007.

[12] S. Zander, G. Armitage, and P. Branch. Covert channels in multiplayer
first person shooter online games. In Local Computer Networks, 2008.
LCN 2008. 33rd IEEE Conference on, pages 215–222. IEEE, 2008.

[13] J. Zöllner, H. Federrath, H. Klimant, A. Pfitzmann, R. Piotraschke,
A. Westfeld, G. Wicke, and G. Wolf. Modeling the security of stegano-
graphic systems. In Information Hiding, pages 344–354. Springer, 1998.

