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ABSTRACT
In a mobile, intermittently connected information-
centric network (ICN), users download files either from
the original source or from caches assembled during pre-
vious downloads. Network coding has helped to increase
download robustness and overcome “missing coupon”
delays. Prior work has also shown that network coding
depletes energy resources much faster than no coding.
Our contribution here is to make coding more efficient,
and to detect when it is not necessary, in order to pro-
long the life of mobile handhelds.

In the network coding context, Cache Coding (i.e.,
coding performed only on fully cached files) can prevent
pollution attacks without significantly reducing diver-
sity and performance with respect to unrestricted code
mixing. Cache Coding introduces the first important
means to reduce energy consumption by avoiding the
extremely processor-intensive homomorphic code used
in conventional unrestricted mixing networks. Our sec-
ond contribution is to detect when Cache Coding is not
required and disable it to save precious energy. The pro-
posed Context-Aware Cache Coding (CACC) toggles
between using Cache Coding and no coding based on the
current network context (e.g., mobility, error rates, file
size, etc). Our CACC implementation on Android de-
vices demonstrates that the new scheme improves upon
network coding’s file delivery rate while keeping energy
consumption in check.
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1. INTRODUCTION
Tactical and emergency response scenarios require

efficient, robust, and secure network communication
among team members in order to quickly deliver
data for situational awareness applications. Handhelds
that opportunistically communicate with limited global
knowledge have a dynamic and resource-constrained na-
ture that demands efficient use of scarce available band-
width. In such settings, networks of smart phones are
formed in an ad-hoc and information-centric manner.
This means that network operations are defined at the
granularity of entire pieces of content, and that partic-
ipating nodes may cache content on behalf of others.
However, despite the remarkable increase in sensing,
storage, processing, and communication capabilities in
mobile devices today, efficient dissemination and stor-
age of content at the volatile network edge remains a
challenging research problem.

Mobile Ad Hoc Information Centric Networks (which
we refer to as MANET ICN) have intermittent connec-
tivity. This introduces the following challenges during
file transfer and dissemination:

• End-to-end connectivity not guaranteed : A contin-
uous path from source to destination may some-
times not occur. Nodes must therefore maintain
coded caches of partial transfers and wait for con-
tact with other nodes to continue transmission.

• Partial caches: Various caches contain different
pieces of a file. A receiver does not know which
caches contain which pieces of the file in advance
and must ask each individual cache. It is im-
portant to parameterize the coding parameters to



maximize throughput and minimize energy con-
sumption.

• Energy efficiency : The tactical networks we are
addressing here are largely comprised of handheld
devices with limited battery life. Improving the re-
silience of the network requires an explicit tradeoff
between energy consumption and transmission re-
liability. One of the key players in this tradeoff
is network coding, as it improves reliability at the
cost of extra energy.

Network coding [13] has been used in mobile ad hoc
networks [19] for data dissemination to overcome the
problem of intermittent connectivity. With Cache Cod-
ing [16], the content originator encodes the file being
transferred. Intermediate nodes can re-encode only if
they have cached the file. More precisely, each file con-
sists of file fragments. The originator transforms the
file into coded blocks, which are linear combinations
of fragments of the file. These coded blocks are then
propagated in the network. Note that in this scheme,
a node can code only if it has possession of the entire
file in its cache. Such nodes are either the originator
or an intermediate node that happens to have cached
the whole file. Thus, both originators and intermediate
caches perform Cache Coding.

One major advantage of this approach is that the or-
dering of partially reassembled files is no longer needed
for file transfer consistency. The requestor can retrieve
arbitrary coded blocks from any node, and reassemble
the original file from a sufficiently large number of lin-
early independent coded blocks without worrying about
sorting them.

Unrestricted network coding, in which intermediate
nodes perform unrestricted mixing (as opposed to mix-
ing of fragments from the cached file), offers more diver-
sity than Cache Coding. The restriction to Cache Cod-
ing thus accepts a greater cost in performance. How-
ever, as mentioned earlier, unrestricted coding is vulner-
able to devastating pollution attacks launched by ma-
licious intermediate nodes, and can corrupt all down-
stream blocks. Conventional solutions use homomor-
phic signatures to overcome these pollution attacks.
Unfortunately, homomorphic codes are typically 100
times more processor-intensive than regular networking
codes, and have a 100-fold increase in expenditure [18].
Cache Coding provides full protection against pollution
attacks while avoiding the extra processing overhead of
homomorphic coding [16]. This comes at the cost of
a modest loss in code diversity and thus throughput
efficiency, which is offset by enormous processing and
energy savings.

Cache Coding, like network coding, improves file de-
livery in real-world scenarios with severely disrupted
networks. The benefits are summarized here:

• Overcoming intermittent connectivity : Since end-
to-end connectivity is not guaranteed, blocks are

cached at intermediate nodes. A requestor can ask
nearby nodes for network coded blocks. The neigh-
bors pull coded blocks from their cache and, de-
pending on context, either transmit them as they
are or mix them and transmit new coded blocks.

• Exploiting partial caches: Nodes cache partial files
that are encoded in the form of linearly indepen-
dent“innovative”blocks. Since each coded block is
as useful for decoding as any another, a requestor
need not contact a particular cache to find missing
blocks. Any node that has blocks for that file will
do.

• Leveraging alternative peer caches: When a re-
questor discovers that the nearest cache is offline
or is too busy to answer requests, it can ask other
nearby coded caches for blocks since each network
coded block is as useful as any other for decoding
the file.

• Efficient battery usage: It has previously been
shown that network coding achieves the minimum
energy per bit required for reliable dissemination
of files in environments with intermittent connec-
tivity [29, 21]. However, network coding leads
to shorter battery lifetimes due to the process-
ing overhead [17, 11]. Our contribution, Context-
Aware Cache Coding specifically addresses this
problem. It detects when Cache Coding is required
based on the context of the transfer. It then for-
wards packets as they come in, without extra code
processing overhead, thus saving precious energy.
This allows nodes to limit the use of Cache Coding
(and corresponding energy consumption) to the
situations when it is needed. At all other times,
Cache Coding is automatically disabled.

The contribution of this paper is two-fold. First,
we demonstrate that Cache Coding must be used to
ensure reliable file delivery in situations where inter-
mittent connectivity losses and/or severe network dis-
ruptions occur. Secondly, we introduce an energy ef-
ficient, Context-Aware Cache Coding scheme (CACC)
that adapts to network conditions and deployed applica-
tions. Using simple metrics, such as link loss rate and
file size, CACC identifies the context in which Cache
Coding is needed and then enforces it. Both emulation
and real-world deployment on Android-based smart-
phones show that CACC improves the file delivery rate
while reducing power consumption.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces the ICN architecture used for
our implementation. Section 3 provides an overview
of the foundations of network coding. Section 4 de-
scribes CACC, our implementation of Cache Coding in
a delay-tolerant MANET. Section 5 evaluates the sys-
tem with real-world scenarios, and demonstrates the
benefits of energy-efficient CACC. Related work is dis-
cussed in Section 6. We conclude in Section 7.



2. ICN ARCHITECTURE
In ICN, the fundamental network primitive transi-

tions from host-based addressing to content-based ad-
dressing (see examples [14, 3, 12]). Content is fetched by
names, which allows intermediate nodes to act as either
full or partial caches. Store-and-forward content dis-
semination enables a requestor the ability to fetch con-
tent pieces from multiple sources. This allows retrieval
of content from nearby caches without reaching all the
way back to the original content source, which produces
improved throughput especially in severely disruptive
scenarios. Cache Coding [16] can further increase the
availability of (especially large) content in disruptive
network environments by splitting the content into a
number of redundantly coded elements that can be re-
assembled if a sufficient number of these coded elements
are received. As we show in this paper, context infor-
mation can be fed into Cache Coding to control the
overhead.

We implemented and evaluated our context-aware
cache coding (CACC) scheme in an ICN architecture
called Information-CEntric Mobile Ad hoc Network-
ing (ICEMAN) which was developed for the DARPA
Content-Based Mobile Edge Networking (CBMEN) [4,
26, 27, 15]. ICEMAN is a modular, open-source,
content-based mobile networking framework with a sim-
ple but expressive attribute-based mechanism for de-
scribing content and expressing interest, and in-network
resolution to offer content dissemination by matching
content to interest. Further details can be found in [5].

It should be noted that in an ICN architecture the de-
cision to cache or not to cache at intermediate nodes can
also be made context-aware. If an intermediate node is
already a receiver, i.e., a requester, then the cache is
available for free. However, if the intermediate note
did not issue an interest for this file, then caching is
an extra cost. If the link loss from the intermediate
node to destination is high (e.g., due to enemy jam-
ming), then caching is appropriate since this gives us
more diversity and eventually more throughput. This
way context awareness is used to optimize the trade off
between energy (i.e., processing cost) and performance
in the case of Cache Coding, initial coding, or no cod-
ing. However, in this paper paper, we only focus on
using context awareness to determine when to enable
Cache Coding.

3. CACHE CODING BASICS
Given the limited contact duration in MANET sce-

narios and the broadcast nature of wireless systems, the
relays are most likely to obtain only partial files. The
pieces (blocks) can be different from relay to relay, but
some are replicated in several relays. When request-
ing a data object from multiple relays, the pieces are
likely to be duplicate and arrive out of order. There
will be gaps and missing pieces, which will make reliable
reconstruction of the file difficult for a receiver. This

is called the coupon collector problem (or last coupon
problem). Network coding [13, 10] has been used in
MANET [19] for data dissemination to overcome the
last coupon problem. First, we briefly describe network
coding. Then, we describe Cache Coding [16], our form
of network coding that provides full protection from pol-
lution attacks.

The algorithm of network coding is as follows. A
source node publishes a file F . In order to dissemi-
nate the file in pieces using network coding, the source
node first transforms F into a set of m vectors (i.e.,
chunks) v1, ...,vm in an n-dimensional vector space over
a finite field GF(28). These vectors are linearly com-
bined by drawing, from the finite field GF(28), an en-
coding coefficient ei to linearly combine with the vec-
tor to create m coded blocks b1, ...,bm. The set of
these coefficients then forms the encoding vector e with
[e1, ..., en]. To reconstruct the file, a node must receive
enough linearly independent coded blocks to be able to
perform matrix inversion. First, we take the transpose
of the received vectors such that: ET = [eT1, ..., e

T
n],

BT = [bT
1, ...,b

T
n], and VT = [vT

1, ...,v
T
n]. Then

we take E−1B which will reconstruct all the original
blocks in the file.

Note that the major advantage of network coding out-
of-order blocks are no longer an issue. The requestor
can retrieve coded blocks from any node, and reassem-
ble the original file as long as it obtains a sufficient
number of linearly independent blocks. Each indepen-
dently generated coded blocks is equally innovative and
useful to relays. The bandwidth saved by network cod-
ing due to control overhead and redundant data blocks
at relays can be huge in a disruptive MANET ICN.

However, network coding is easily attacked. The pri-
mary advantage of Cache Coding [16] over network cod-
ing is that Cache Coding protects against pollution at-
tacks while still achieving high throughput for file de-
livery. In Cache Coding, only sources and intermediate
nodes have fully reconstructed the file, and are able to
encode and propagate the coded blocks into the net-
work.

Cache Coding provides good diversity, which is nec-
essary for network coding efficiency, without requiring
unrestricted network coding at all intermediate nodes.
If we recode at intermediate nodes (without Cache Cod-
ing), we must protect the data from pollution attacks,
e.g., by using homomorphic codes. With Cache Coding,
a node signs the cache before mixing packets. When the
generation is decoded, if it fails the signature, it is dis-
carded. Because signed blocks cannot be repudiated,
malicious intermediate nodes are easily detected.

4. ENERGY-EFFICIENT CONTEXT-
AWARE CACHE CODING

While Cache Coding has the advantages as previ-
ously described, it requires extra bandwidth to carry
the coefficients and handle the computational resources



dedicated to the encoding/decoding processes. The
tradeoffs of performance gain and overhead for disrup-
tive MANET ICNs must be managed by our proposed
energy-efficient CACC.

Our proposed contribution CACC aims to adaptively
switch between Cache Coding, low-overhead fragmenta-
tion, and atomic transmission of data objects. Depend-
ing on the context, CACC automatically turns Cache
Coding on and off for a given data object. The objective
is to eliminate unnecessary bandwidth consumption due
to increased header size and processing overhead when
Cache Coding is unlikely to improve end-to-end perfor-
mance, but be ready to trigger Cache Coding instantly
in emergencies by using context indicators.

4.1 Context Indicators
The nature of Cache Coding methods requires frag-

menting the data object being transmitted to utilize
the benefit of transmitting random coded blocks, ei-
ther when frequent retransmissions are required from
one source or when multiple content sources may be
leveraged. However, in the case when a data object is
small, fragmenting that object may be less efficient than
simply requesting an atomic re-transmission due to the
fact that identification of the fragments requires addi-
tional overhead. Moreover, Cache Coding incurs even
higher overhead due to the required coefficients in each
coded block. Therefore, Cache Coding should remain
disabled in the case when the file size is relatively small
compared to the basic fragment unit.

The major advantage of Cache Coding is its resilience
to intermittent links due to high mobility. This advan-
tage comes from the fact that Cache Coding is random-
ized and all coded blocks contain equal entropy. When
the link breaks down often, it is difficult to predict
which fragmented blocks get lost without proper feed-
back. With Cache Coding, however, all sources/caches
can send innovative blocks (i.e., each one of them is
linearly independent with the rest of the received frag-
ments) without waiting for feedbacks, which leads to a
higher chance of finishing full file transmission given a
reasonably short period of time over one hop. Another
important factor to consider is the coefficient overhead
of Cache Coding. The coefficient overhead increases the
transmission unit size and may worsen the performance.
Therefore, it is expected that Cache Coding should be
disabled when the link is not lossy.

Based on the above observations, we propose two con-
text indicators.

• Application-related context indicator: The
data object size needs to be considered when de-
ciding whether the data object is more suitable for
Cache Coding (i.e., the overhead can be compen-
sated) vs. atomic (re-)transmission.

• Network condition-related context indica-
tor: When the connectivity is intermittent and

the contact time is short, the link loss rate can re-
flect the current situation (i.e., network condition
and node mobility) to determine whether Cache
Coding can speed up the data delivery from mul-
tiple sources/caches.

4.2 CACC
Our adaptive Cache Coding algorithm takes the fol-

lowing steps. By default, Cache Coding is disabled for
new data objects and destination nodes.

1. CACC monitors the link loss rate for all known
one-hop neighbors. The loss rate estimation is sim-
ply a weighted moving average over a fixed inter-
val of time. The link loss rate is estimated based
on the number of successful receptions of periodic
beacons at the link layer. The beacon interval 4t
is parameterized and can be adjusted to vary sen-
sitivity. For downstream nodes, if the downstream
link quality is good, fragmentation can be used
for subsequent hops after receiving Cache Coded
blocks and reconstructing content. We use the fol-
lowing equations to compute the loss rate estimate:

α = 1− e
4t
−W (1)

ln(t) = α · bi + (1− α) · ln(t− 1) (2)

where W is defined as the length of the interval
of time to measure the loss estimate over, 4t is
defined as the duration between beacons, and bi
is 1 if no beacon was received (indicating a loss)
and 0 if a beacon was received (indicating no loss).
ln(0) is defined to be 1, indicating that we perform
cache coding until the loss rate settles down to a
point where we can safely stop using it.

2. At the sender side (i.e., the sender can be a cache
or a data source), Cache Coding is enabled for data
objects that satisfy the following two conditions:

ln(t) > lth (3)

s(d) > sth (4)

where lth and sth are the threshold values of link
loss rate and data object size, respectively. ln(t)
is the average link loss rate at time t for the 1-hop
neighbor node n. s(d) is the size of data object d.

Note that even relay nodes that are not data
sources nor caches (i.e., did not issue an interest for
this file) must apply the CACC procedure. More
precisely, if the link loss criterion determines that
Cache Coding should be used, the Relay must start
accumulating blocks of the file in question until it
has cached the entire file. At that point it switches
to Cache Coding. It is intuitive to understand why
arbitrary relays (not interested in the file) must
cache code. In fact, a relay node may be attacked
by an adversarial jammer and drop all the packets.
Recovery is possible only if the Relay nodes on the



cut-set under attack enter the Cache Code mode,
thus providing enough diversity to overcome the
attack.

3. At the receiver side (i.e., the receiver may be a
relay node or the intended receiver), if a Cache
Coded block is received from any of its neighbors,
the previously received un-encoded fragments are
converted to encoded blocks.

The conversion from an un-encoded fragment to an
encoded block allows CACC to recycle already received
fragments rather than waiting sufficient numbers of in-
novative blocks are generated from a source and dissem-
inated to a receiver. In CACC, the i-th fragment of a
file can be seen as a special case of coded block in which
the coefficients used to encode this block is a unit vector
in which the i-th element is 1 and all other elements are
0. Therefore, the fragment can be converted to a coded
block by simply encoding it with such a unit vector.
For example, to convert the second fragment f2 of a 4-
fragment file, we compute the converted coded block by
[0, 1, 0, 0][0,f2,0,0]. In this way, all received fragments
and encoded blocks can be used for decoding the origi-
nal data object so that all successful transmissions are
utilized.

4.3 Implementation
The ICEMAN architecture [26, 27] is event-driven,

modular, and layer-less, which provides flexibility and
scalability. Central in the architecture is the kernel. It
implements an event queue, over which managers that
implement the functional logic communicate. Managers
are responsible for specific tasks such as managing com-
munication interfaces, encapsulating a set of protocols,
and forwarding content.

In ICEMAN, files are opportunistically cached at mo-
bile nodes to favor future file requests. Files can be
downloaded in parallel from multiple caches to make
downloads reliable and fast. Cache Coding across par-
allel caches further improves the throughput. However,
in intermittent connectivity, caches may often be par-
tial. Thus, these caches cannot be signed since the sig-
nature implies that the intermediate node has received
the full file, has verified the signature and has replaced
in each block the originator signature with its own.

The traditional unrestricted network coding in which
all relays may mix (i.e., re-encode) any available chunks
even if the cached data object is partial, exposes security
concerns in an ICN due to the possibility of pollution
attack. Therefore, we apply the cache coding, which
allows only the caches who have the full data objects to
reencode, generate, and sign new coded blocks. Caches
holding only partial data objects are only allowed to
forward the coded blocks they have received as is. In
this way, attackers can be identified and blacklisted by
looking at the signature.

In ICEMAN, interests are composed of key-value
pairs to describe the content the requestor is search-

ing for. Suppose node n broadcasts an interest and
gets metadata notification from the source node s as a
match to its interest. Node n then starts downloading
the blocks from node s. During this process, node n
learns the unique content identifier (Cid) of the file car-
ried in each block, which can be used to optimize the
content flow of blocks.

For this purpose, we introduce the concept of precise
interests when the requestor learns, from its neighbors,
Cid for which it is searching for. Using Cid, node n
can check the Bloom filters received from other neigh-
bors and determine if there are other caches for file f .
Knowing that other neighbors have a copy of f , n can
send them precise interests, which is essentially Cid of
f and can start pulling the blocks from multiple caches
in parallel. This multiple cache downloading via precise
interests improves the performance of Cache Coding. In
this case, Bloom filters (cache summaries that dissem-
inated side by side with interests to provide a view of
the files available, both complete and incomplete files)
can serve as routing tables to indicate the direction to
the cache.

CACC switches between cache coding and low-
overhead fragmentation by generating an event in ICE-
MAN architecture. The switching occurs at a sender for
specific target nodes; that is, the decision is based on
each pairwise link. The link loss rates are calculated as a
moving average of the percentage of lost beacon packets
over given period of time. To measure the packet loss,
an event is sent from the Ethernet connectivity mod-
ule of ICEMAN to notify the loss estimation module
upon successfully receiving a beacon. The loss estima-
tion module then decides to generate another event to
CACC that in turn triggers switching between Cache
Coding and fragmentation. A node switches to Cache
Coding for data transmissions targeting nodes associ-
ated with the high loss links, and switches back to frag-
mentation on other links upon receiving this event. The
implementation of CACC parameterizes lth and sth, via
user-defined configuration files.

5. EVALUATION
We study the scenarios where Cache Coding has the

highest throughput gain and the scenarios where it is
not strictly required. We use these experimental results
to guide intuition about the contexts in which Cache
Coding should and should not be utilized.

5.1 Setup
In order to evaluate the performance on larger mobile

scenarios, our test framework emulates mobile network
scenarios on a Linux server. The network emulation is
done using EMANE 802.11 [2]. EMANE includes a path
loss model and interfaces with the Common Open Re-
source Emulator, CORE 4.3 [6]. We use EMANE and
CORE together to run realistic emulations of mobile
performance on a Linux server using the same code-



base that runs on Android devices with real testbed
experiments. EMANE models the network topology,
and CORE is responsible for the mobility model and
moving nodes around in accordance with scenario re-
quirements. We use CORE for compartmentalization
so that multiple virtual ICEMAN nodes can exist on
the same physical machine; through the use of resource
and network isolation.

For Android testing, we ran tests on Nexus S smart-
phones running Gingerbread. In order to emulate the
resource constrained nature of an Android device, we
use the cpulimit [1] tool to limit the CPU time allo-
cated to ICEMAN processes.

To capture the energy requirement, we use a nor-
malized energy utility measurement. We define this as
measuring the total number of files delivered and the
total CPU time needed. We then normalize both file
delivery and CPU overhead to fragmentation (no cod-
ing). Finally, we divide the normalized number of files
delivered by the normalized CPU overhead. It has been
shown previously that coding induces noticeable com-
putation overhead on mobile devices [25, 24]. Thus, we
capture the CPU overhead as an distinguishing energy
indicator when comparing coding versus no coding.

5.2 Parameters
Our test framework runs publisher and subscriber ap-

plications on each ICEMAN node that communicates
with the ICEMAN process on each virtual node accord-
ing to the requirements set by the scenario. Each pub-
lisher and subscriber application keeps logs of the data
objects that are sent and received. These logs are then
analyzed, along with emulation output from EMANE
and CORE, to study the bandwidth, latency, and de-
livery rates from the experiment.

We configured our system to use Cache Coding for
files larger than 32KB. The block size for Cache Cod-
ing operations was also set to 32KB. The window pa-
rameter W for the loss estimate calculation was set
to 30 seconds. Data Objects were disseminated using
UDP broadcast. The UDP broadcast mode precludes
MAC layer ACKs so there was no loss detection and
retransmission. Through out our experiments, we use
ieee802.11abg link provided by EMANE with an omni-
directional antenna gain of -5 dbi and a system noise
factor of 4 db in freespace loss model.

5.3 Micro Benchmark
We first evaluate the performance overhead of Cache

Coding versus fragmentation in a simple 2-node sce-
nario. We run a 6 minute scenario in which two nodes
publish 60 objects each, in order to measure the over-
head of NetCode versus Fragmentation under ideal con-
ditions on a resource constrained device.

In the Micro Benchmark, there is good connectivity
between the two Android phones, and Frag performs
better. In Table 1, NetCode imposes extra overhead due
to the expensive coding operations, while Frag allows

Files
Delivered

Normalized
Energy
Utility

Frag 30 1.0
NetCode 20 0.33

Table 1: Micro Benchmark: In static scenarios with
good connectivity, NetCode has unncessary overhead.

Figure 1: Search patrol scenario with 30 nodes: 2
squads (composed of 3 sub-squads) walk in a triangle
pattern between 3 rendezvous points.

data to be transmitted quickly and with lower power
usage. This motivates the development of CACC, which
switches intelligently between them.

5.4 Scenarios
Our evaluation tests CACC across two scenarios: a

search patrol scenario in Section 5.4.1, and a data mule
scenario in Section 5.4.2; to illustrate the behaviour of
CACC in dynamic settings.

5.4.1 Search Patrol Scenario
Consider the search patrol model in Figure 1, where

a search patrol visits rendezvous points and shares re-
connaissance and updates information. In this search
patrol scenario, there are 2 squads with 14 members
each. Each squad is composed of 2 subgroups. Intra-
squad communication occurs periodically at each ren-
dezvous point (i.e., central servers, hot spot, and red
box in Figure 1).

Both the central servers publish two 512KB files each.
Each scout in each subgroup takes a 1MB picture at the
hot zone and performs intra-subgroup sharing. This
results in a total of 60 files published and shared to
a total of 30 subscribers. Intra-squad sharing occurs
only at each rendezvous point. Inter-squad file sharing
occurs in the middle ground as illustrated as the red box
in Figure 1. Due to intermittent connectivity, each node
only has partial caches. The partial caches consist of the
files from the central servers, and pictures taken at the
hot zone. If there are partial files, intra-squad sharing



Files
Delivered

Normalized
Energy
Utility

Frag 158 1.0
CACC(0.2) 513 1.08
CACC(0.4) 489 0.92
CACC(0.6) 363 0.87
CACC(0.8) 382 0.71
NetCode 396 0.71

Table 2: Search Patrol Scenario: CACC is able to utilize
both NetCode and Frag for improved delivery rates and
reduced power consumption.

continues as each squad walks to next rendezvous point.
This scenario continues for 720 seconds.

5.4.2 Data Mule Scenario
In the data mule model, two large squads (4x4 and

3x4 members each) are connected by a few data mules
which ferry files. Nodes in a squad are 30 meters apart.
Intra-squad communication is conducted by multi-hop
connections while inter-squad communication is facili-
tated by three data mules. In this scenario, every node
in each squads publishes two 1MB files, one every five
minutes. The three data mules publish five 512K files,
one every minute. All nodes subscribe to all content.
The data mule speed is 1.4 m/s. Each data mule is out
of range of other data mules and communicates with
each squad for 60 seconds. The duration of this sce-
nario is 600 seconds. This model allows us to evaluate
the effects of large, internally connected groups that are
interconnected with each other by a low-bandwidth con-
nection. We expect to see the coupon collector problem
taking effect and slowing down the file reconstruction
between the two groups.

5.5 Results
To measure the effectiveness of dissemination, we

measure both the delivery rate, in terms of the num-
ber of data objects delivered, as well as the normalized
energy utility as defined in Section 5.1.

We compare across three different schemes, low over-
head fragmentation (Frag); cache coding without any
context aware switching (NetCode), and network cod-
ing with context aware switching (CACC). We use the
notation CACC(lth) to indicate the usage of a CACC
with the given value of lth.

We experiment across various values of lth, using val-
ues of 20%, 40%, 60%, and 80%. Conceptually, Frag
is equivalent to using CACC with an lth value greater
than 100%; as lth can never exceed 1, network coding
will never be enabled. NetCode is equivalent to using an
lth value of 0% as network coding will then immediately
be enabled.

5.5.1 Search Patrol Scenario
In this scenario, the subsquads move as groups and
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Figure 2: Search Patrol Scenario: CACC delivers more
data objects than NetCode using less power.

the channel loss rates between intra-squad links are low,
while the average loss rates of inter-squad links are rel-
atively high. Additionally, the rendezvous time is short
so that data objects are delivered in parts. Therefore,
NetCode has a clear advantage for transmissions be-
tween nodes from different squads. However, since the
number of nodes in the mobile group is small and the
number of data objects to be exchanged within the
mobile group is few, the interference caused by chan-
nel contention is relatively low. Therefore, NetCode
is not required for intra-subsquad communications and
would just introduce unnecessary overhead. Frag gets
the fewest data objects through, since it gets hit with
the coupon collector problem.

CACC combines the best of both worlds, it is able to
utilize low-overhead Fragmentation for intra-subsquad
transmissions and use NetCode when needed for inter-
subsquad transmissions. From the results we can see
that CACC uses less power than NetCode; and delivers
many more data objects in the case of CACC(0.2) and
CACC(0.4).

Figure 2 and Table 2 illustrate this point clearly. Note
that the delivery rate is a function of the mobility, and
jumps when the subsquads interact. Initially, NetCode
performs the best and has the lowest latency, at the ex-
pense of power consumption; NetCode always uses ex-
pensive network coding operations while CACC tries to
save power and use low-overhead Fragmentation. Over
time, when enough blocks get through and the squads
meet again, CACC is able to reconstruct data objects
and improve delivery rates.

5.5.2 Data Mule Scenario
The Data Mule scenario illustrates the benefits of us-

ing CACC for delivery rates versus simply using Net-
Code or Frag. Intra-squad sharing is reliable, but inter-
squad sharing depends on how efficiently blocks can be
transmitted by the data mules to the other squad. In
this scenario, the delivery rates are a function of the
mobility. We expect that all intra-squad subscriptions



Files
Delivered

Normalized
Energy
Utility

Frag 114 1.0
CACC(0.2) 256 1.29
CACC(0.4) 202 1.21
CACC(0.6) 287 1.45
CACC(0.8) 262 1.31
NetCode 248 1.25

Table 3: Data Mule Scenario: CACC delivers more data
than NetCode while using similar amounts of power.
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Figure 3: Data Mule Scenario: CACC delivers more
data than NetCode and Frag.

will complete successfully, while the delivery rate for
inter-subsquad subscriptions will depend on the mules.
If the mules have a shorter stay, the spikes in data ob-
ject delivery will be closer together. However, the spikes
would be shorter as the mules would not be able to re-
ceive/send enough data objects when they are in con-
tact with the squads. A stay duration of 60 seconds, as
in our scenario, is a reasonable middle ground.

In Table 3, we can see CACC outperforms both Net-
Code and Frag. CACC(0.6) delivers more data objects
when compared to plain NetCode. Other cases (except
CACC(0.4)) perform like NetCode in terms of delivery
rate. CACC is able to utilize the network context to
learn that blocks should be sent to the mules. It thus
pays the cost of network coding for those nodes, but
avoids expensive network coding operations when shar-
ing data over reliable intra-squad links. We note that
the power consumption is similar to NetCode, but more
data is delivered.

Figure 3 illustrates this point. Frag takes much longer
to deliver data objects intra-squad initially, due to the
coupon collector problem. Very few data objects are
delivered through the mules, again due to the same
problem. NetCode, since it does not suffer from the
coupon collector problem, is able to deliver more data
objects, and deliver them quickly. Initially, the per-
formance of CACC is somewhere in between NetCode
and Frag. This is due to the fact that at startup a lot of

data is being exchanged, and CACC needs to detect the
network state. CACC detects the initial lossy channel
and switches to network coding. Later on, past the 100
second mark, when enough blocks and fragments come
in through the mules, intra-squad sharing can proceed
through low-overhead fragmentation and thus delivery
rates are improved.

Files
Delivered

Normalized
Energy
Utility

Frag 60 1.0
CACC(0.2) 330 7.93
CACC(0.4) 353 7.06
CACC(0.6) 234 3.58
CACC(0.8) 178 2.73
NetCode 252 5.81

Table 4: Android Search Patrol Scenario: CACC(0.2)
delivers the most data while using the least power.
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Figure 4: Android Search Patrol Scenario: CACC de-
livers more data than NetCode and Frag.

5.5.3 Search Patrol Scenario on Android
Results for the Search Patrol scenario on Android are

presented in Table 4 and Figure 4. We can see that Net-
Code initially takes longer to deliver data objects, due
to the time required to encode and decode blocks on a
slower CPU. In this time, CACC, using a mix of frag-
mentation and network coding, is able to deliver data
objects with lower latency. Note that Frag is unable
to deliver many data objects as it is hit hard by the
coupon collector problem.

In terms of power usage, we see that CACC(0.2) uses
the least power, while other CacheCode settings use
more power. In addition, Frag uses more power per
data object than NetCode in this scenario, due to the
fact that delivery rates are low. This illustrates that
the choice to use low-overhead transmissions must also
consider the fact that data delivery may be adversely af-
fected. We can also observe that CACC is adaptive and
able to both save power and increase delivery rates.



6. RELATED WORK
We summarize a few representative network coding

approaches and their implementations that also propose
context-awareness, even in some cases within the scope
of ICNs, and highlight the differences from our study.

6.1 Network coding in ICNs
Montpetit et al. [23] have identified network coding

within content-centric networking (CCN) as a strategy
with tremendous potential. However, their work only
presented an architecture, rather than reporting on an
empirical analysis. Further, we have introduced the idea
of adaptively enabling network coding, explained the
need for context-aware network coding to preserve en-
ergy resources on resource constrained devices, and im-
plemented our ideas on Android devices. We have also
emulated the system, the network-wide effects, and re-
ported our findings.

Wu et al. [28] have implemented and evaluated the
benefits that network coding provides for cache hit rates
in content centric networks. Interestingly, the evalua-
tion used unrestricted coding applied to real traces from
PPTV (peer-to-peer video streaming). However, their
work does not address selectively enabling network cod-
ing, which may not always be required in a wired peer-
to-peer system. Moreover, it does not address pollution
attack protection in unrestricted coding. Our solution
detects when to enable network coding, a characteris-
tic that is of critical importance in mobile environments
with limited power.

6.2 Context-aware network coding
Previous work on network coding based on context

has mostly been associated with forwarding in disrupted
networks. It has focused on adjusting the degree of re-
dundancy in the encoding. MORE [7] is the earliest
work that proposes adaptive network coding for such en-
vironments. MORE relays opportunistically form mul-
tiple paths through which packets are re-encoded and
forwarded. CodeMP [8] further studies adaptive net-
work coding based on measured loss rates that affect
TCP sessions. While this family of adaptive network
coding approaches adjust the use of multiple paths and
degree of redundancy using link loss rate estimates, they
focus on connected networks with unstable channels. In
contrast, we apply network coding in delay-tolerant net-
working scenarios. We have also conducted our experi-
ments with more realistic channel models.

Existing work on using network coding in delay-
tolerant networks (DTNs [22]) focuses on reducing the
number of transmissions needed for epidemic routing
or probabilistic forwarding. Lin et al. [20] studied the
tradeoff between performance and resource consump-
tion in DTNs. They propose spreading more coded
packets than are needed to reduce the number of trans-
missions required. Chuah et al. [9] proposed CANCO,
which only spreads coded packets among some of the

nodes encountered. Delivery predictability and friend-
liness are used as metrics to decide which nodes to use.

Our work differs from previous work in several re-
spects. First, our goal is to maximize the delivery rate
while reducing the energy consumption by selectively
enabling and disabling network coding. Prior work is
unable to adapt to improved network conditions. In
such cases, always-on network coding imposes a cost,
and depletes precious power on resource constrained de-
vices. Second, the context we use is the condition of the
network, rather than the history of encounters or social
relationships with other nodes. Third, we employ net-
work coding by broadcasting blocks over UDP connec-
tions to neighbors, rather than reducing transmissions
by forwarding to only a subset of nodes. More impor-
tantly, we provide an algorithm and evaluate an im-
plementation that automatically switches between frag-
menting and network coding the content, based on the
runtime context. Of equal significance, we have per-
formed emulations of real-world scenarios and imple-
mented the system on Android devices. In contrast, ear-
lier work on context-aware and adaptive network cod-
ing is limited to theoretical analysis or simulations of
limited scenarios. It is worth noting that CACC can
be used with previously proposed coding-aware routing
protocols, such as [20] and [9].

7. CONCLUSION
In this paper, we have evaluated the performance of

a cache oriented, network coding enabled ICN in two
different versions: with and without the use of Cache
Coding. More precisely, we have researched the “con-
text” for activating/deactivating Cache Coding. We
call this adaptive strategy Context-Aware Cache Cod-
ing (CACC).

We demonstrated that while Cache Coding is neces-
sary in environments with intermittent connectivity in
order to reliably disseminate files, in “connected topol-
ogy” conditions the magnitude of the throughput in-
crease may not warrant the higher overhead of Cache
Coding. In such situations, CACC detects and disables
Cache Coding. By testing CACC on Linux and An-
droid, we showed that opportunistic disabling of Cache
Coding reduces the latency and power consumption,
and maintains or even increases the data delivery rate.

In this study we mainly focused on sender-driven
switching, where a sender continuously monitors the
loss threshold in order to decide when to switch modes.
In future work we plan to investigate a receiver-driven
strategy. In the latter, the receiver will monitor its
neighbors to detect if they are receiving coded blocks.
If enough neighbors are receiving coded blocks, the re-
ceiver may request the sender to switch to Cache Cod-
ing in order for the receiver to take advantage of the
diversity of nearby coded partial caches. Additionally,
we plan to explore optimal selection of the “context”
parameters.
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