
Evaluation of a Delay-Tolerant leN Architecture
Hasnain Lakhani*, Timothy McCarthy*, Minyoung Kim*, David E. Wilkins*, Samuel Woodt

*SRI International, Menlo Park, CA, USA tUCSC, Santa Cruz, CA, USA

Abstract-Simulation/emulation is key for early testing, assess
ment, and scalability evaluation of networking solutions for mo
bile ad-hoc networks (MANETs). If the solution is highly config
urable - such as ENCODERS, SRI's delay-tolerant information
centric networking (ICN) solution - this type of evaluation is
crucial. For effective modeling of information flows, the test
framework needs to: (1) allow repeatable execution of scenarios
with different patterns of network traffic, operating in different
mobility and network-usage contexts, (2) provide a rich simulated
environment that can model virtually any network topology and
mobility, with high-fidelity device models, and (3) support flexible
large-scale simulation, with the option of using virtual machines
that execute the same code that would be used on an actual
device. We describe our evaluation framework and the results of
using it to develop and evaluate ENCODERS.

Keywords-Evaluation, MANETs, Delay-Tolerant Networking,
Information-Centric Networking

I. Introduction
We developed a high-fidelity, large-scale, repeatable evalua

tion framework that was crucial to our successful development

of a delay-tolerant information-centric networking (ICN) solu

tion for mobile ad-hoc networks (MANETs). This framework
was key for early design testing, self assessment, and scalabil

ity evaluation. Because our solution is highly configurable, this

framework also provided the means to conduct a systematic
parameter-space exploration to find the best configurations. We

begin by giving overviews of our ICN solution, ENCODERS,
and our evaluation framework and methodology.

A. ENCODERS

Typical MANETs are subject to dynamic network topolo
gies, network partitions, energy constraints, and bandwidth

limits. ENCODERS (Edge Networking with Content-Oriented

Declarative Enhanced Routing and Storage) is SRI's solution
for these challenges. It developed algorithms that operate at

and exploit the higher-level of abstraction offered by an ICN

architecture, and techniques for the storage and dissemina
tion of content that is relevant in a given context, thereby

further exploiting the richness of the available metadata and
user/application interests. ENCODERS is open source [2].

We started with the Haggle open-source code base [3],
which provides underlying functionality for neighbor dis

covery and basic protocols, among other things. We made
major improvements in it, including improving performance in

mobile networks and extensions for utility-based dissemination

and cache management, network coding, and security.

Applications communicate in ENCODERS via data objects
that contain both metadata and content. Metadata includes both

a description of content and of the appplication's interests.

This separation of metadata from content allows the selective
distribution of content based on interest matching and is a

key feature supporting the efficient use of bandwidth and low

Fig. I. Test Automation Framework: A concise specification of scenario
parameters is used to automatically generate tests (using the SRI Test
Generator module) with the mobility of the nodes automatically detailed.
These tests, which can be rerun reproducibly using the SRI Test Runner
module, are then automatically run and results generated for human analysis.

latency in ENCODERS (because content is much larger in size

than the metadata that describes it).

ENCODERS is a search-based data-dissemination frame

work. It efficiently controls dissemination, basing decisions
on priorities that reflect information and mission needs, while

using network resources wisely. As long as any path exists

between two nodes, information will get through, even if not
all segments of the path are up at the same time. Thus, it

maintains delivery of critical information despite interruptions

and intermittent connectivity. ENCODERS is layered on top
of existing network protocols (e,g., UDP, TCP), making it

network agnostic. Furthermore, its modular, open architecture

facilitates extension, including supporting future interoperabil
ity with more specialized airborne protocols.

In [4], we describe (i) the ENCODERS architecture (ini

tially named ICEMAN), which integrates multiple content

dissemination, utility-based caching, and transport mecha
nisms to provide a publish/subscribe API with attribute-based

content naming, and (ii) content- and context-based policies

to achieve efficient communication at the edge. Our design
emphasizes compositionality. Without architectural changes,

our system supports any combination of the caching, transport,

and dissemination mechanisms.

B. Evaluation Framework

MANETs typically include network disruption and recon

nection; as well as limitations on bandwidth, range, trans
mission power, computing power, and memory. We present

evaluation results showing that ENCODERS delivers the

highest-priority (most relevant) information available in a
timely manner, given constraints from the these limitations.

We measure throughput, delivery fraction (in terms of relevant
data objects), and latency as our performance metrics. To

show that ENCODERS is a robust solution that can work

978-1-4799-8993-5/15/$31.00 mOl5 IEEE 950 ICUFN 2015

Composite Policy Composition of Features

Phase I Baseline
SP Send Priority
SP+URI SP, Utility-based Replication I
SP+UR2 SP, Utility-based Replication 2
SP+UC+URI SP, Utility-based Caching, UR I
SP+UC+UR2 SP, Utility-based Caching, UR 2
SP+SC+URI SP, Social-aware Caching, UR I
SP+SC+UR2 SP, Social-aware Cachi ng, UR 2

TABLE I
THE COMPOSITE POLICIES THAT WE EXPLORED.

continuously, we also present results for measures such as

bandwidth utilization and CPU/memory usage.

Figure 1 shows the flow of our test-automation framework,

which is composed of test (i) generation, (ii) execution, and
(iii) analysis. Users can specify a json file containing multiple

test specifications (mobility scenarios, application parameters,

connectivity parameters, and so on). Test Generator creates
multiple test cases from this specification, which are executed
by Test Runner. Each test case contains scripts for mobility,

network setup, logging, and ENCODERS configuration files.
Each test case is fully self contained and reproducible. Test

Runner executes these simulation/emulation scenarios using

CORE/EMANE [5], [1] and keeps detailed logs from the test
runs that are later analyzed. These logs contain delivery as

well as node, network, and performance metrics.

Through the use of the test-automation framework, we

were able to concisely specify large numbers of automated
parameter-space exploration studies and regression tests that

ran nightly on a set of Linux servers. Daily, we had detailed

graphs to explore the effects of both code and configuration
changes, which allowed us to rapidly improve ENCODERS.

Our first-year (Phase 1) evaluation of ENCODERS was
previously reported [8] and enabled us to understand the

performance characteristics of different policies. We found

that dissemination, transport, and caching policies have signif

icantly different performance characteristics (in terms of total

data objects delivered and latency) and that a combination of

these policies was necessary to achieve the best performance.
More specifically, the best observed performance was achieved

with combinations of hard- and soft-constraint utility-based
caching policies that rank data according to network context.

We present evaluations for a variety of composite policies,

which are summarized in Table I. Each policy is described as a

set of features that are added onto the Phase I baseline policy,

which is the best-performing combination of hard- and soft
constraint policies just mentioned. These features are described

in detail elsewhere [4]. Briefly, Send Priority uses the priority

specified in each data object. Utility-based Replication refers
to a form of content replication: data objects are proactively

pushed based on their utilities to the receiving nodes, for

the sake of increasing the delivery ratio, or reducing the
delivery latency. It may use resources sending data to nodes

that have no interest in the data. Utility-based Caching is a

generalized caching approach that frames the cache purging
and replacement decisions as a utility-optimization problem.

A caching policy defines content- and context-sensitive utility

functions that vary in time and space. Social-aware Caching
uses assumptions about the social hierarchy of the nodes.

A l A2 A3
Types OpS; Biolnfo l ; Area Picture; Map; Frag Order; Op

Biolnf02 Audio Order; Mission

Sizes (KB) 1;5;10 250;500; I 000 251;501;1001
Pub. Dis!. unifonn, mean -lOs exponential, mean exponential, mean

= 60s = 300s
Total Pub. 1840 690 152
Max Recv. 115200 2070 1520

Publishers all all all

Subscribers all squad leaders within squad

TABLE II
THREE CLASSES OF APPLICATION-GENERATED TRAFFIC.

A l A2 A3

RTTL of lOs RTTL of 900s RTTL of 400s
Replacement by creation time No Replacement No Repl acement
No Replication Utility-based Replication No Replication
No Network Coding Network Coding Network Coding

TABLE m

POLICIES FOR EACH TRAFFIC CLASS. RTTL (RELATIVE TIME-TO-LIvE)
GIVES THE EXPIRATION DATE OF A DATA OBJECT.

II. Scenarios
We used two scenarios for evaluation: (i) ground-based

platoon-level operations and (ii) an airborne-ground-space

network. In both cases, using our evaluation framework was

key. Given the scenario definition, we first define mobility
constraints on the nodes so that our Test Generator can

automatically detail movement. We then use our automated
test framework to conduct a parameter-space exploration to

guide us in determining a scenario-specific set of parameter

settings for further evaluation.

A. Ground-based platoon-level operation

We modeled a 30-node tactical scenario with an explicit

social hierarchy (three squads of 10 members each). To specify
squads' movement, we use the Nomadic Community Mobility

model in the BonnMotion scenario generator [6]. In this

model, groups are performing a random walk around their
reference points that follow a Random Waypoint Model. There

is high network connectivity within a squad, but intra-squad

connectivity is very limited. Occasionally squads pass near
each other, providing brief periods of high connectivity.

Each node runs applications that generate different classes

of traffic, which are defined in Table II. For each class,
we generate content that supports situational awareness amd

specify policies, as shown in Table III. RTTL gives the
time (upon receiving from the neighbor) after which a data

object can be discarded without delivering to applications, and

replacement by creation time (an example use of our general
replacement mechanism) allows newer versions of the same

data to replace older versions.

Al traffic models a blue-force tracking application that
generates small-sized content that is frequent and continuous

(e.g., GPS coordinates). Every node publishes content to

everyone else. A2 traffic models an application that collects
data in response to random events, such as taking a photo of

a vehicle, map annotations, or audio recordings. Content is

pushed to the squad leaders who share it with other leaders.
A3 traffic models intra-squad communication (e.g., the squad

leader pushes an operational order to the squad).

We evaluate ENCODERS for the variety of policies in Table

I. Each content type is further subject to the specified policies,

951

Traffic Content SP UR I UR 2 UC SC
Class Type
AI GPS Very Low No No Low Low

BioInfol Low No No Low Low
BioInfo2 Low No No Low Low

A2 Area Pic. Medium Low High Low Medium Medium
Map Medium Medium Medium Medium Medium
Audio Rec. Medium High Low High Medium Medium

A3 Frag Or. High No No High High
Op Or. Very High No No High High
Mission Very Very High No No High High

TABLE IV

THE PRIORITIES AND UTILITIES OF EACH CLASS OF CONTENT. THE

RIGHTMOST FIVE COLUMNS ARE THE FEATURES USED BY THE COMPOSITE

POLICIES IN TABLE I.

Content Type Publisher Subscriber Size Freq.
Fighter-track All fighter pairs Other pairs. all C2 7500bits lOs
Full Air Pic. All C2 Ship, a C2, fighter pairs 75000bits 2s
Ground-track Ground All C2 7500bits 2s
Radar Image Sensing fighter pair One C2, Ship, Ground IMbits 5s
Video Rec. Sensing fighter pair One C2, Ship, Ground 7.8Mbits 10m

TABLE V

SUMMARY OF DATA EXCHANGE IN THE AIRBORNE SCENARIO.

using the priority and utility assignments in Table IV. We start
with the best-performing Phase 1 policies [8], then augment
them with new features, and evaluate performance.

B. Air borne/ground networ k with satellite communication
In the scenario in Figure 2, two 4-ships of fighters perform

a reconnaissance mission. Each 4-ship is supported by a C2
aircraft in a racetrack orbit which serves as a relay to one
ship and a ground site. The transmissions from fighters are

limited, because they do not want to be detected by their
transmissions and may be jammed, so the fighter pairs do not

communicate with each other. The links from C2 aircraft to
fighters and the link between one C2 aircraft and Ship have

50% connectivity (10 minutes on and 10 minutes off). There
is with no connectivity from fighters to C2 aircraft.

Space-based nodes (such as nano-sats) support communi
cation from fighters. The initial model contains two nano

satellites, which are always connected. Our initial model
optimistically assumes a continuous satellite presence in the
network. This corresponds to having enough satellites to
provide continuous coverage and an ability to handoff net
work responsibilities from one satellite to another, which
ENCODERS could support. In future work, one could model
more realistic constellations of nano-sats with hand-over as
constellations pass overhead, and parameterize links to explore
different devices and scenarios.

We modeled the data exchange for a mission where the
fighters collect radar images and video recordings of the area

of interest as shown in Table V. Table VI summarizes the
policies we evaluated for each type of content.

III. ENCODERS Evaluation Results
We first describe results from the ground scenario, which

was tested on both Linux containers and Android devices
(Nexus S). For Linux, we set a CPU limit for each virtual
host to roughly match the CPU resources on the target phones.
We model an IEEE 802.lla/b/g link in EMANE with an
omnidirectional antenna gain of -5 dBi, a system noise factor
of 4dB, and a freespace pathloss model. Using our evalua
tion framework, we conducted a parameter-space exploration

Bidircclional
100 % connectivity

<-.
Bidirecgtional
50 % connectivity

- -.
Unidirectional
50 % connectivity

Fig. 2. Airborne/ground network scenario - Fl-F4: fighter pairs, AI-A2:
C2 aircraft (e.g., E-3 AWACS), S: surface ship, G: ground site, Sat: satellite.

Content Type Replacement RTTL SP Network Coding
Tracks, Full Air Pic. By creation time 60s High Off
Radar Image By creation time No Medium On
Video Rec. No No Low On

TABLE VI

POLICIES SPECIFIED FOR EACH TYPE OF CONTENT.

for varying policies and show the results here. Graphs are
generated by our Test Automation Framework as shown in
Figure 1. Next we show results from the airborne scenario.
We use the RF-Pipe link model with a data rate of 10Mbps.
The metrics across all our experiments are total data objects
delivered for each traffic class, delivery latency distribution for

each traffic class, total transmit/receive bytes, and total data

object delivered bytes.

A. Robustness Results via Obser vables

Figure 3 shows observables for the purpose of evaluating the
robustness of ENCODERS. These figures show observables

used for monitoring the resource usage (e.g., bandwidth, CPU,
memory) and network status (e.g., a connectivity measure
based on the number of neighbors). These graphs all show that
the quantity in question (bandwidth consumption, CPU, and so
forth) level off as time elapses, and do not exhibit undesirable
exponential properties, providing evidence of ongoing, robust
execution of ENCODERS at each node. Other observables
were also continuously monitored for self-assessment, includ
ing observables on information flow, such as content and

interest. Disseminated data objects can be observed with
distributed monitoring, and can be further analyzed to optimize
use of network resources.

To understand what factors affect network performance, we
observed the use of the cache. Figure 3(d) shows the ratio
of cache usage over time when the cache size is limited to
about 75% of the typical observed cache usage (when the
cache is unlimited) in our scenario. We see that the cache is
heavily utilized and close to capacity, an observation we will
use later in this section in analyzing the importance of cache
management to performance.

Evictions can be due to purging or replacement. Figure
3(g) shows a fairly linear growth over time with small spikes,
indicating that ENCODERS is managing the cache smoothly,
consistent with long-term stability. Figure 3(h) shows the
number of data objects hard evicted (dropped immediately
on receipt, before insertion into the cache). By comparing to
Figure 3(e), we see that hard evictions spike when connectivity
spikes. Figure 3(e) shows a sudden spike in connectivity before

952

(a)

r
!

800 1000 1200 1<00 1_ 1100
�l')

nl _n1 �'nlO • -n13 • -n16 • -nl!1 ·.n22 n2S '- ·n26
•• n2 -"5 ·nB . -nIl - n14 _n11 • '"20 • • nn �'n26 -,,19
" .,3 • • n(; -119 • • nI2 • "IS •• .,18 n21 · ·"24 "27 - n)O

(b)

ni . on. · ·n7 ·-nl0 ··n13 -n16 · ·nI9 ··n22 -,,25 -n28
··n2 -n5 -n8 · ·nl1 ··nI4 -n17 " "20 · ·n23 �'n26 -n29
• 'n3 � 'n6 -"9 • -"12 ···"15 .,"18 nn · '"24 .,27 '-")0

(c) (d)

lOG 100 1000 1100 UOO 1600 1100
"""'!I)

.,1 · · .. 7 ·-nl0 · ·nU · ·nI6 · ·nI9 ··n22 -"25 · ·n28
•• 1\1 -n5 '1'>8 · ·nl1 ··nI4 _n17 •• .,20 " "23 ··n26 -1'l29
• • n) " 116 -119 " .,12 · - .,15 ··nI8 -nn · ·"24 .,21 ·-n)O

(e) (f) (g) (h)
Fig. 3. Observables from ground scenario. (a) Bandwidth consumption, (b) Cumulative CPU usage, (c) Cumulative memory consumption, (d) The percentage
of cache capacity used, (e) Number of physical neighbors at any given time, (f) Number of the logical neighbors at any given time, (g) Total cache evictions,
(h) Hard evictions. X-axis is time in seconds. Y-axis is the value of the observable in question, and each colored line represents the value of the observable
over time for one node in the network. The graphs do not exhibit undesirable exponential properties for resource usage.

t=400, when hard evictions also spiked. This happens because �.""�"o�.�.'"mm.

there are many cached items that are duplicated or outdated

when a new group of neighbors is connected.

B. Ground-based platoon-level operation
Figure 4 shows the data-object delivery in a 30-node

ground-based operation. For the first three bars of each column

(colored blue, green, and red), the y-axis (left side) is totaJ

bandwidth in MB. For the last two, the y-axis on the right
side gives the delivery fraction. The fraction of totaJ data

objects delivered for A2 and A3 is depicted by the cyan bar in

histograms, and the fraction for Al is depicted in the rightmost
bar of each group of 5 bars. Delivery fraction is the ratio of

delivered data objects over the theoretical maximum number

of data objects that can be received given a fully connected
network without mobility and resource constraints.

The bandwidth data are as follows: total transmitted bytes

(Tx) and total received bytes (Rx) includes all traffic that

occurs (i.e., both content and overhead), while data-object re
ceived bytes (DRx) measures the portion of Rx that constilutes

data objects in traffic classes A2 and A3 that are delivered to

an application that is interested in them.
In Figure 4(a), the 2 rightmost bars in each group show

improved performance over our baseline (the leftmost 5 bars
labeled as Phase 1). Figure 4(b) presents the evaJuation results

on Android devices, which presents lower total usage of
bandwidth for overhead for all policies, and the red and aqua

bars in each group show improved performance for the higher

priority A2 and A3 content for aJI policies.
We now compare the two graphs in Figure 4. In our baseline

(Phase 1), we see the Al data delivery (purple bar) is much
higher for Androids than it was for Linux containers, while

the DRx and A2+A3 values are much lower. This is because
network coding [7] often blocks due to insufficient CPU

on Android devices, resulting in aJl resources being devoted

l

"j
··f

r
J ,,'

I�x --. .. �FI.. --'2+-'3 --'11

(a) (b)

Fig. 4. Data object delivery; (a) Linux containers, (b) Android devices. The
x-axis depicts results for different dissemination/caching policies (Table I).

to delivering the smaJI Al data objects. Our utility-based

dissemination prioritizes A2 and A3 content, so most of the

resources are spent on A2 and A3, with greatly improved
throughput within the Android CPU limitations, as shown in

the red and aqua bars of Figure 4(b). The Al rates (purple
bar) are low because outdated Al data is not disseminated.

Figure 5 presents the delivery performance on Linux con

tainers and Android devices. Data-object delivery latency

is the amount of time that it takes the data object to be
delivered to an interested subscriber. The x-axis is latency in

seconds, and the y-axis is the totaJ number of data objects

that were received within that given latency. Each colored line
represents a different composite policy from Table I. Figure

5(a)(c) is for latency from subscription (i.e., interests injected

into ENCODERS), and Figure 5(b)(d) is for latency from
publication (i.e., data objects injected into ENCODERS).

The different y-axis scaJe in Figure 5(a)(c) shows that

2-3 times more A2+A3 objects are delivered with Linux

containers. The latency is lower with Androids (Figure 5(c)(d))
because most of the data objects never get delivered - the blue

(Phase 1) plot is caused by the same phenomenon as the tall

purple bar in Figure 4(b), namely insufficient CPU for network
coding means nearly aJl delivered objects are Al data.

953

(a)
OverTme·AHA3

(c)

_ 1000 1100 1_ 1_ 1_
�--..h)

(b)

_ IODD UOO UCIO I_ I_
-"

(d)

Fig. 5. Delivery performance: (a) and (c) the cumulative number of data
objects delivered (over the entire scenario), (b) and (d) within a given latency.
(a) and (b) are on Linux containers; (c) and (d) on Android devices. Each
line represents a different policy combination (Table I).

(a)

:1
o _I SP �l �2 �l �z �I �

-

I-..nllmited Cache -.Jmited Cachel

(b)

Fig. 6. Effects of limiting cache size with 30-node Linux containers (a) data
object delivery with cache limited to 24MB, (b) utility-based view.

To understand what factors affect network performance, we

experimented to assess the sensitivity of ENCODERS to the

cache size at each node. We use Figure 4(a) as the baseline,
which depicts performance with an unrestricted cache. In this

case, we observed that cache usage went up to approximately

32MB at many nodes, well within the cache limitations of
proposed devices. Figure 6(a) shows the effect of limiting the

cache to about 75% of this typical cache usage. We see that
the baseline results are not affected. Because of the poorer

performance in Phase 1, the cache rarely filled up, so limiting

it had no effect.

On the other hand, ENCODERS delivers more data, using

32MB of cache at many nodes. With a 24 MB cache limit, we
see delivery of A2+A3 reduced by 20-50%, although still sig

nificantly improved over the baseline (Phase 1). This happens

because data objects are dropped before they can be delivered.
These results indicate that ENCODERS performance is quite

sensitive to cache size if the cache size is not sufficient.

Figure 6(b) is another utility-based view of these re

sults. In this analysis, we assign high/medium/low utilities
to A3/A2/Al content type, respectively. Such utilities might

be assigned by the application producing them, taking into

account the mission and the situation. Intuitively, a higher
utility indicates more useful data. We see that the effects of

,,- Delivervliltencv

,,' ,�

to>
�
§
g,,,
�

,,-

," �. "

Ic:::JI.CldClr c:::m-ClCks c::::Mdeol

(a) (b)

Fig. 7. Data-object delivery latency for different types of content: (a) with,
and (b) without the satellite. Without the satellite, only tracks get delivered.

With Satellite Without Satellite
Content Min Mean Max Min Mean Max

Tracks 0.032 0.094 1.322 0.033 0.792 40.615
Radar 0.875 9.565 85.964 nfa nfa nfa
Video 39.834 368.543 686.220 nfa nfa nfa

TABLE VII
LATENCY (SECONDS) FOR AIRBORNE DATA OBJECT DELIVERY

limiting the cache size are significant, although performance
is still better than baseline.

C. Airborne/ground network with satellite communication

We used our evaluation framework to evaluate performace
in the airborne scenario, with and without the satellite nodes.

Table VII and Figure 7(a) show that, with satellites, 69%
of tracks are delivered within 2 seconds and 100% within 12

seconds, while 66% of radar is delivered within 20 seconds.

Videos take approximately ten minutes, a time that is likely

high because of the transmission being interrupted (due to

intermittent connectivity of the C2) while in progress. The

graphs on the right side have a logarithmic y-axis, so the first
bar represents over 104 tracks. Without satellites, Table VII

and Figure 7(b) show that only tracks get delivered, mostly
within 2 seconds. Looking more closely, only 14,356 tracks

are delivered versus 30,756 tracks with the satellite. The lower

performance without satellites is due to disconnections (as
nodes move) and the use of replacement policy, which will

discard undelivered tracks when they are outdated. Radar

and video are not delivered because fighters choose not to
broadcast to non-space neighbors, to avoid detection.

Figure 8 shows data-object delivery for different types of
content. In 8(a), videos are published every ten minutes by the

fighters and received at a C2 node at regular intervals. Videos
arrive at the ground and ship at approximately the same times
because of the reliable link between them. About half the time,

there is a significant delay between the video getting to the

C2 node and subsequently to the ship, which is due to periods
of disconnection while the C2 is out of range of the ship.

Radar data is received at regular rates at the C2 node in
Figure 8(b). The maximum possible number of radar images

received at both C2 nodes is twice that at the ground or ship

(as there is only one of each). The radar images received at
ground and the ship are significantly less than this maximum,

because outdated images get replaced when lack of connec
tivity prevents their delivery. Delivery at the ground lags that

of the ship as delivery to ground goes through the ship.

954

I flghter->awacs o-oflghter->ground o.oflghter->shlp!

(a)
CumulatlV<lDellV<l

(c)

CumulatlveDelive -Radar

00 500 1000 1� Tl�S)2500 3000 3500 .000

I flghter->awacs -oflghter->ground o oflghter_>shlp!

'00 •

(b)

1000 1500 200CI 2500 3000]500 4000
11me(o)

(d)

Fig. 8. The cumulative number of data objects by type received over time
between each pair of publisher/subscriber. The subfigure shows (a) video, (b)
radar, (c) tracks with the satellite, and (d) tracks without the satellite. Note
the large differences in scale of the y-axis for each graph.

" lS00 2000 2S00 1000 lSOO 4000
Tlme(s)

(a)

Dellveryoverllme

(b)

Fig. 9. The number of data objects delivered in the previous minute at time
t, (a) with, and (b) without the satellite. Note the different y-axis scales: (a)
shows 500+ data objects being consistently delivered, while (b) alternates
between about 175 and 300, as the C2 node connection comes and goes.

The tracks are delivered at a regular rate as shown in Figure
S(c), because they are highest priority and travel aJong stable

links. In Sed), tracks from the ground to C2 go at a constant
rate as one C2 is consistently connected to the ship and it can

forward them on to the other C2 node. Tracks from the C2

nodes to the other C2 and ship go at a constant rate for the
same reason (thus, lines for each of these overlay each other

in the graph). Tracks from C2 nodes to the fighters go at a

constant rate while they are connected but there are 10 minute
periods where no tracks go through due to disconnection,

producing the discontinuity seen in the green-diamond lines

in the graph. There is no burst when C2 nodes come back in
contact, because ENCODERS has replaced all outdated tracks

with the latest information.

With satellites, the other nodes in the network gain, without
the detection risk of the fighters communicating to C2 nodes,

knowledge of the fighters location (mostly within 2 seconds),
and of the content published by the fighters (� of radar

delivered within 20 seconds, videos take approximately ten

minutes). Figure 9 shows the delivery rate of data objects over
time with and without satellites. We see aJmost double the

delivery, and consistent delivery, due to the satellites ensuring
contact between nodes. ENCODERS is also able to deliver

radar and video because of the satellite. Without the satellite,

tracks from C2 nodes to fighters can only be transmitted when
they are in contact (every ten minutes), producing the regular

intervals of higher II ower delivery seen in Figure 9(b). There is

a consistent delivery without satellites of tracks from ground to
C2, as well as between C2 nodes and the ship, but no delivery

of content published by the fighters.

IV. Conclusion
We developed tools to automate a systematic parameter

space exploration for MANET scenarios. Our fully automatic
test generation and execution framework can run simulations

with a variety of network topology, mobility, and link models

provided by CORE/EMANE. Our setup supports flexible sim
ulation and also emulation where we use Linux containers to

execute the same code that would be used in a testbed or a field

demonstration. We run ENCODERS in resource-constrained
Linux containers that approximate the performance of the

target platform. Because of these laboratory tests, ENCODERS

was robust and ready for the large number of tests that we ran

on a 30-node Android phone testbed.

We modeled a new military scenario that included ground,

maritime, airborne, and satellite nodes, to explore how widely
applicable our system is beyond platoon-level ground opera

tions. Our parameter-space exploration for a given scenario
consists of identifying key parameters of the ENCODERS

design, and running many tests to investigate the trade-offs

inherent in different combinations of the vaJues of those pa
rameters. In this way, we generate scenario-specific guidance

for setting the values for those parameters. We believe that the

proposed methodology is highly usable for various scenarios
and systems (both military and non-military).

Acknowledgment: This work was supported by DARPA and
SPAWAR Systems Center Pacific under Contract N66001-12-C-40Sl.
The views expressed are those of the author and do not reflect the
official policy or position of the 000, or the U.S. Government.

References

[I] EMANE. http://cs.itd.nrl.navy.millwork/emane/.
[2] ENCODERS. http://encoders.csl.sri.com/.
[3] Haggle. http://www.haggleproject.org.
[4] ENCODERS software design description v.2.0. http://encoders.csl.sri.

com/wp-contentluploads/20 14/08/CBM EN -SRI-Design-Description-Y2.
0-Dist-A.pdf,2014.

[5] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim. CORE: A real
time network emulator. In Military Communications Conference. 2008.
MILCOM 2008. IEEE, pages 1-7,2008.

[6] c. de Waal and M. Gerharz. Bonnmotion: A mobility scenario generation
and analysis tool. Communication Systems group, Institute of Computer

Science IV, University of Bonn, Germany, 2003.
[7] J. Joy, Y-T. Yu, M. Gerla, M.-O. Stehr, S. Wood, and J. Mathewson.

Network coding for content-based intermittently connected emergency
networks. Mobicom Demo' 13,2013.

[8] S. Wood, J. Mathewson, J. Joy, M.-O. Stehr, M. Kim, A. Gehani,
M. Gerla, H. Sadjadpour, and J. Garcia-Luna-Aceves. ICEMAN: A
system for efficient, robust and secure situational awareness at the network
edge. MILCOM ' 13,2013.

955

